

Craedl Python SDK Documentation

Introduction

The Craedl Python SDK (Software Development Kit) enables
Craedl.org [https://craedl.org] users to access their Craedl accounts using
the Python programming language. This provides a mechanism for using Craedl on
computers without access to a web browser (such as a high-performance computing
cluster) and to automate common Craedl project manipulations (such as file
uploads and downloads) within a Python script.

Quick start

Get started with the Craedl Python SDK by obtaining it via
PyPI [https://pypi.org/project/craedl/]:

pip install craedl

Log into your Craedl account at Craedl.org [https://craedl.org] and generate
an API access token by clicking the key in your profile view. Copy your token
and paste it when prompted after running one of the following commands:

(A) Configure your account through a system shell

python -m craedl

(B) Configure your account through an interactive Python interpreter

import craedl
craedl.configure()

Now you can use Python to access your Craedl, for example:

import craedl
profile = craedl.auth()
for craedl in profile.craedls:
 print(craedl)

Documentation

	The basics
	Obtain the Craedl Python SDK module

	Configure your authentication token

	Use the Craedl Python SDK

	Examples
	See Craedls

	Download data

	Upload data

	Upload directory recursively

	Craedl Python SDK documentation
	Core
	Auth

	Craedl

	Inode

	Profile

	Cache
	Cache

The basics

The Craedl Python SDK is, ultimately, a wrapper around the Craedl RESTful API.
Through the RESTful API, you can do just about anything in code that you can do
in the Craedl web site, as long as you don’t mind composing commands like this
one and then manually parsing the JSON response:

curl -H "Authorization: Bearer RqjxUjHwuoov0LvVQV1bEuGLOftwEfOiLHXaGxzh" https://api.craedl.org/profile/whoami/

The Craedl Python SDK takes care of all of this messy HTTP request formatting
and JSON parsing for you, replacing it with an intuitive Python module that you
can use to easily script your Craedl usage.

The ability to script your Craedl usage can be beneficial if you commonly
perform repetitive tasks like uploading the results of an experiment. It can be
mission-critical if you want to access Craedl through a computing resource that
doesn’t have a GUI (because then it’s impossible to access Craedl through a web
browser).

Follow these steps to get started using the Craedl Python SDK.

Obtain the Craedl Python SDK module

Obtain the Craedl Python SDK from PyPI [https://pypi.org/project/craedl/]:

pip install craedl

You only have to perform this step once (on a particular computer and/or virtual
environment).

Configure your authentication token

Retrieve your API access token from your Craedl account by logging into
Craedl.org [https://craedl.org] and clicking the key tab in your profile.
Generate a token and pass it to one of the following commands when prompted:

(A) Configure your account through a system shell

python -m craedl

(B) Configure your account through an interactive Python interpreter

import craedl
craedl.configure()

This token will remain active indefinitely. Should you have reason to worry that
your token has been compromised, use the interface in your Craedl profile to
revoke the compromised token, generate a new one, and re-run the command above
to enable your Craedl Python SDK authentication.

Use the Craedl Python SDK

Now you’re ready to write a Craedl Python script.
To begin, you must always import the Craedl Python SDK and get your profile:

import craedl
profile = craedl.auth()

From here, you can put together the building blocks documented in
Craedl Python SDK documentation. If you’re just getting started, you may find our
Examples helpful.

Examples

See Craedls

import craedl
profile = craedl.auth()

print your craedl tree
for craedl in profile.craedls:
 print(craedl)

get a particular craedl
craedl = profile.get_craedl('craedl-slug', 1)

Printing the Craedl tree generates output such as:

Test Craedl [craedl-slug:1]
 - Child 1 [craedl-slug:2]
 - Child 1a [craedl-slug:5]
 - Child 1a1 [craedl-slug:7]
 - Child 1b [craedl-slug:8]
 - Child 1c [craedl-slug:9]
 - Child 2 [craedl-slug:3]
 - Child 2a [craedl-slug:4]

where ‘craedl-slug’ is the Craedl’s slug (visible in the URL through the web browser)
and the number is the Craedl’s ID. Getting a particular Craedl requires this
slug and ID.

Download data

import craedl
profile = craedl.auth()

get a craedl
craedl = profile.get_craedl('craedl-slug', 1)

access the data in your craedl
root = craedl.get_data()

get the contents of a particular directory
directory = root.get('path/to/data/in/Craedl')
children = directory.list()
for directories in children['dirs']:
 print(directories)
for files in children['files']:
 print(files)

download the 0-th file's data in this directory
file_downloaded = files[0].download('path/on/local/computer/to/save/data')

Upload data

import craedl
profile = craedl.auth()

get a craedl
craedl = profile.get_craedl('craedl-slug', 1)

access the data in your craedl
root = craedl.get_data()

get a particular directory
directory = root.get('path/to/data/in/Craedl')

create a new directory inside directory
directory_new = directory.create_directory('new-directory-name')

upload a new file into directory_new
directory_new = directory_new.upload(
 '/path/on/local/computer/to/read/data'
)

Upload directory recursively

import craedl
profile = craedl.auth()

get a craedl
craedl = profile.get_craedl('craedl-slug', 1)

access the data in your craedl
root = craedl.get_data()

get a particular directory
directory = root.get('path/to/data/in/Craedl')

upload the directory recursively
this incantation of upload() will pick up from where it left off
if it is stopped for any reason
directory = directory.upload(
 '/path/on/local/computer/to/read/data',
 rescan=False, # ignores new children in directories already transferred
 output=True # outputs progress to STDOUT
)

Craedl Python SDK documentation

Core

Auth

	
class craedl.core.Auth(host=None)

	This base class handles low-level RESTful API communications. Any class that
needs to perform RESTful API communications should extend this class.

	
DELETE(path)

	Handle a DELETE request.

	Parameters

	path (string) – the RESTful API method path

	Returns

	a dict containing the contents of the parsed JSON response or
an HTML error string if the response does not have status 200

	
GET(path, data=False)

	Handle a GET request.

	Parameters

	
	path (string) – the RESTful API method path

	data (boolean) – whether the response is a data stream (default False)

	Returns

	a dict containing the contents of the parsed JSON response,
data stream, or an HTML error string if the response does not have
status 200

	
POST(path, data, filepath=None)

	Handle a POST request.

	Parameters

	
	path (string) – the RESTful API method path

	data (dict) – the data to POST to the RESTful API method as described at
https://api.craedl.org

	filepath (string) – the path to the file to be passed

	Returns

	a dict containing the contents of the parsed JSON response or
an HTML error string if the response does not have status 200

	
process_response(response)

	Process the response from a RESTful API request.

	Parameters

	response (a response object) – the RESTful API response

	Returns

	a dict containing the contents of the parsed JSON response or
an HTML error string if the response does not have status 200

Craedl

	
class craedl.core.Craedl(host, slug, id=None, data={})

	A Craedl. Get a Craedl from the API by passing id. Get a Craedl from an
existing dictionary (for example, a child carried by a parent)without any
network traffic by passing data.

	
get_data()

	Retrieve the root directory associated with this Craedl.

	Returns

	the root Inode of this Craedl

	
get_wiki(revision=0)

	Retrieve the wiki for this Craedl.

	Parameters

	revision (int) – the historical revision to view, moving backward through
time (defaults to current revision)

Inode

	
class craedl.core.Inode(craedl, id=None, data={})

	A Craedl inode (directory or file) object. Get an Inode from the API by
passing id. Get an Inode from an eisting dictionary (for example, a child
carried by a parent) without any network traffic by passing data.

	
abspath()

	Get a string representation of the absolute path for an inode.

	Returns

	a string containing the absolute path for an inode

	
create_directory(name)

	Create a new directory within the current directory.

	Parameters

	name (string) – the name of the new directory

	Returns

	the new Inode

	
delete()

	Delete the current directory.

	
download(save_path, rescan=True, output=False, accumulated_size=0)

	Download the contents of the current Inode into save_path. If the current
Inode is a directory, download recursively; this generates a cache database
file in the save_path that is used to enhance performance of retries and
synchronizations.

	Parameters

	
	save_path (string) – the path to the directory on your computer that will
contain this file’s data

	rescan (boolean) – whether to rescan the directories (defaults to True);
ignores new children in already transferred directories if False

	output (boolean) – whether to print to STDOUT (defaults to False)

	accumulated_size – the total size of the download so far; primarily
supports recursive download output messages

	Returns

	a tuple containing the updated instance of this directory and the
size of the download

	
download_recurse(cache, save_path, rescan, output, accumulated_size)

	The recursive function that does the downloading. There is little reason
to call this directly; use Inode.download() to start a recursive
directory download.

	Parameters

	
	cache (Cache) – the cache database

	save_path (string) – the path to the directory on your computer that will
contain this file’s data

	rescan (boolean) – whether to rescan the directories (defaults to True);
ignores new children in already transferred directories if False

	output (boolean) – whether to print to STDOUT (defaults to False)

	accumulated_size – the amount of data that has been downloaded so
far

	Type

	integer

	Returns

	a tuple containing the updated instance of this directory and
the amount of data that has been downloaded by this recursion level
and its children

	
get(path)

	Get a particular directory or file. This may be an absolute or relative
path.

	Parameters

	path (string) – the directory or file path

	Returns

	the requested directory or file

	
list()

	List the contents of this directory.

	Returns

	a dictionary containing a list of directories (‘dirs’) and a list
of files (‘files’)

	
upload(path, rescan=True, output=False, follow_symlinks=False)

	Upload to the current directory. If uploading a directory, this generates a
cache database in the path that is used to enhanceperformance of retries
and synchronizations.

	Parameters

	
	path (string) – the local path to the file/directory to be uploaded

	rescan (boolean) – whether to rescan the directories (defaults to True);
ignores new children in already transferred directories if False

	output (boolean) – whether to print to STDOUT (defaults to False)

	follow_symlinks (boolean) – whether to follow symlinks (default False)

	Returns

	the uploaded Inode

	
upload_directory(directory_path, rescan=True, follow_symlinks=False, output=False)

	Upload a new directory contained within this directory. It generates a
cache database in the directory_path that is used to enhance
performance of retries and synchronizations.

	Parameters

	
	directory_path (string) – the path to the directory to be uploaded on your
computer

	follow_symlinks (boolean) – whether to follow symlinks (default False)

	rescan (boolean) – whether to rescan the directories (defaults to True);
ignores new children in already transferred directories if False

	output (boolean) – whether to print to STDOUT (defaults to False)

	Returns

	the updated instance of the current directory

	
upload_directory_recurse(cache, directory_path, rescan, follow_symlinks, output, accumulated_size)

	The recursive function that does the uploading. There is little reason
to call this directly; use Directory.upload_directory() to start a
directory upload.

	Parameters

	
	cache (Cache) – the cache database

	directory_path (string) – the path to the directory on your computer that
will contain this file’s data

	rescan (boolean) – whether to rescan the directories (defaults to True);
ignores new children in already transferred directories if False

	follow_symlinks (boolean) – whether to follow symlinks

	output (boolean) – whether to print to STDOUT

	accumulated_size – the amount of data that has been uploaded so
far

	Type

	int

	Returns

	a tuple containing the updated instance of this directory and
the amount of data that has been downloaded by this recursion level
and its children

	
upload_file(file_path, output=False, accumulated_size=0)

	Upload a new file contained within this directory.

	Parameters

	
	file_path (string) – the path to the file to be uploaded on your computer

	output (boolean) – whether to print to STDOUT (defaults to False)

	accumulated_size (int) – the size that has accumulated prior to this
upload (defaults to 0); this is entirely for output purposes

	Returns

	a tuple with the updated instance of the current directory
and the uploaded size

Profile

	
class craedl.core.Profile(id=None, data=None)

	A Craedl profile object. Get a Profile from the API by passing id. Get a
Profile from an existing dictionary without network traffic by passing data.
Get your profile by passing no arguments.

	
get_craedl(slug, id=None)

	Get a particular Craedl.

	Parameters

	
	slug (string) – the Craedl slug

	id (int) – the Craedl id

	Returns

	A Craedl instance

	
get_craedls()

	Get a list of craedls to which this profile belongs.

	Returns

	a list of craedls

Cache

Cache

	
class craedl.cache.Cache

	This class handles all cache database operations. It is used largely in
support of recursive file uploads and downloads.

It operates by storing a SHA1 hash representing the time stamps for children
within a given directory and a status bit that indicates whether the
contents were successfully transferred at the time the hash was created.

Index

 A
 | C
 | D
 | G
 | I
 | L
 | P
 | U

A

 	
 	abspath() (craedl.core.Inode method)

 	
 	Auth (class in craedl.core)

C

 	
 	Cache (class in craedl.cache)

 	
 	Craedl (class in craedl.core)

 	create_directory() (craedl.core.Inode method)

D

 	
 	DELETE() (craedl.core.Auth method)

 	delete() (craedl.core.Inode method)

 	
 	download() (craedl.core.Inode method)

 	download_recurse() (craedl.core.Inode method)

G

 	
 	GET() (craedl.core.Auth method)

 	get() (craedl.core.Inode method)

 	get_craedl() (craedl.core.Profile method)

 	
 	get_craedls() (craedl.core.Profile method)

 	get_data() (craedl.core.Craedl method)

 	get_wiki() (craedl.core.Craedl method)

I

 	
 	Inode (class in craedl.core)

L

 	
 	list() (craedl.core.Inode method)

P

 	
 	POST() (craedl.core.Auth method)

 	
 	process_response() (craedl.core.Auth method)

 	Profile (class in craedl.core)

U

 	
 	upload() (craedl.core.Inode method)

 	upload_directory() (craedl.core.Inode method)

 	
 	upload_directory_recurse() (craedl.core.Inode method)

 	upload_file() (craedl.core.Inode method)

 nav.xhtml

 Table of Contents

 		
 Craedl Python SDK Documentation

 		
 The basics

 		
 Obtain the Craedl Python SDK module

 		
 Configure your authentication token

 		
 Use the Craedl Python SDK

 		
 Examples

 		
 See Craedls

 		
 Download data

 		
 Upload data

 		
 Upload directory recursively

 		
 Craedl Python SDK documentation

 		
 Core

 		
 Auth

 		
 Craedl

 		
 Inode

 		
 Profile

 		
 Cache

 		
 Cache

_static/minus.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/craedl.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/down.png

